3.321 \(\int \frac{(e+f x)^3 \cos (c+d x)}{(a+b \sin (c+d x))^2} \, dx\)

Optimal. Leaf size=418 \[ -\frac{6 f^2 (e+f x) \text{PolyLog}\left (2,\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b d^3 \sqrt{a^2-b^2}}+\frac{6 f^2 (e+f x) \text{PolyLog}\left (2,\frac{i b e^{i (c+d x)}}{\sqrt{a^2-b^2}+a}\right )}{b d^3 \sqrt{a^2-b^2}}-\frac{6 i f^3 \text{PolyLog}\left (3,\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b d^4 \sqrt{a^2-b^2}}+\frac{6 i f^3 \text{PolyLog}\left (3,\frac{i b e^{i (c+d x)}}{\sqrt{a^2-b^2}+a}\right )}{b d^4 \sqrt{a^2-b^2}}-\frac{3 i f (e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b d^2 \sqrt{a^2-b^2}}+\frac{3 i f (e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{\sqrt{a^2-b^2}+a}\right )}{b d^2 \sqrt{a^2-b^2}}-\frac{(e+f x)^3}{b d (a+b \sin (c+d x))} \]

[Out]

((-3*I)*f*(e + f*x)^2*Log[1 - (I*b*E^(I*(c + d*x)))/(a - Sqrt[a^2 - b^2])])/(b*Sqrt[a^2 - b^2]*d^2) + ((3*I)*f
*(e + f*x)^2*Log[1 - (I*b*E^(I*(c + d*x)))/(a + Sqrt[a^2 - b^2])])/(b*Sqrt[a^2 - b^2]*d^2) - (6*f^2*(e + f*x)*
PolyLog[2, (I*b*E^(I*(c + d*x)))/(a - Sqrt[a^2 - b^2])])/(b*Sqrt[a^2 - b^2]*d^3) + (6*f^2*(e + f*x)*PolyLog[2,
 (I*b*E^(I*(c + d*x)))/(a + Sqrt[a^2 - b^2])])/(b*Sqrt[a^2 - b^2]*d^3) - ((6*I)*f^3*PolyLog[3, (I*b*E^(I*(c +
d*x)))/(a - Sqrt[a^2 - b^2])])/(b*Sqrt[a^2 - b^2]*d^4) + ((6*I)*f^3*PolyLog[3, (I*b*E^(I*(c + d*x)))/(a + Sqrt
[a^2 - b^2])])/(b*Sqrt[a^2 - b^2]*d^4) - (e + f*x)^3/(b*d*(a + b*Sin[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.885268, antiderivative size = 418, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 7, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.269, Rules used = {4422, 3323, 2264, 2190, 2531, 2282, 6589} \[ -\frac{6 f^2 (e+f x) \text{PolyLog}\left (2,\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b d^3 \sqrt{a^2-b^2}}+\frac{6 f^2 (e+f x) \text{PolyLog}\left (2,\frac{i b e^{i (c+d x)}}{\sqrt{a^2-b^2}+a}\right )}{b d^3 \sqrt{a^2-b^2}}-\frac{6 i f^3 \text{PolyLog}\left (3,\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b d^4 \sqrt{a^2-b^2}}+\frac{6 i f^3 \text{PolyLog}\left (3,\frac{i b e^{i (c+d x)}}{\sqrt{a^2-b^2}+a}\right )}{b d^4 \sqrt{a^2-b^2}}-\frac{3 i f (e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b d^2 \sqrt{a^2-b^2}}+\frac{3 i f (e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{\sqrt{a^2-b^2}+a}\right )}{b d^2 \sqrt{a^2-b^2}}-\frac{(e+f x)^3}{b d (a+b \sin (c+d x))} \]

Antiderivative was successfully verified.

[In]

Int[((e + f*x)^3*Cos[c + d*x])/(a + b*Sin[c + d*x])^2,x]

[Out]

((-3*I)*f*(e + f*x)^2*Log[1 - (I*b*E^(I*(c + d*x)))/(a - Sqrt[a^2 - b^2])])/(b*Sqrt[a^2 - b^2]*d^2) + ((3*I)*f
*(e + f*x)^2*Log[1 - (I*b*E^(I*(c + d*x)))/(a + Sqrt[a^2 - b^2])])/(b*Sqrt[a^2 - b^2]*d^2) - (6*f^2*(e + f*x)*
PolyLog[2, (I*b*E^(I*(c + d*x)))/(a - Sqrt[a^2 - b^2])])/(b*Sqrt[a^2 - b^2]*d^3) + (6*f^2*(e + f*x)*PolyLog[2,
 (I*b*E^(I*(c + d*x)))/(a + Sqrt[a^2 - b^2])])/(b*Sqrt[a^2 - b^2]*d^3) - ((6*I)*f^3*PolyLog[3, (I*b*E^(I*(c +
d*x)))/(a - Sqrt[a^2 - b^2])])/(b*Sqrt[a^2 - b^2]*d^4) + ((6*I)*f^3*PolyLog[3, (I*b*E^(I*(c + d*x)))/(a + Sqrt
[a^2 - b^2])])/(b*Sqrt[a^2 - b^2]*d^4) - (e + f*x)^3/(b*d*(a + b*Sin[c + d*x]))

Rule 4422

Int[Cos[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.)*((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)])^(n_.), x_Symbol]
 :> Simp[((e + f*x)^m*(a + b*Sin[c + d*x])^(n + 1))/(b*d*(n + 1)), x] - Dist[(f*m)/(b*d*(n + 1)), Int[(e + f*x
)^(m - 1)*(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && NeQ[n, -1]

Rule 3323

Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[2, Int[((c + d*x)^m*E
^(I*(e + f*x)))/(I*b + 2*a*E^(I*(e + f*x)) - I*b*E^(2*I*(e + f*x))), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
 NeQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 2264

Int[((F_)^(u_)*((f_.) + (g_.)*(x_))^(m_.))/((a_.) + (b_.)*(F_)^(u_) + (c_.)*(F_)^(v_)), x_Symbol] :> With[{q =
 Rt[b^2 - 4*a*c, 2]}, Dist[(2*c)/q, Int[((f + g*x)^m*F^u)/(b - q + 2*c*F^u), x], x] - Dist[(2*c)/q, Int[((f +
g*x)^m*F^u)/(b + q + 2*c*F^u), x], x]] /; FreeQ[{F, a, b, c, f, g}, x] && EqQ[v, 2*u] && LinearQ[u, x] && NeQ[
b^2 - 4*a*c, 0] && IGtQ[m, 0]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2531

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> -Simp[((
f + g*x)^m*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)])/(b*c*n*Log[F]), x] + Dist[(g*m)/(b*c*n*Log[F]), Int[(f + g*x)
^(m - 1)*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 6589

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rubi steps

\begin{align*} \int \frac{(e+f x)^3 \cos (c+d x)}{(a+b \sin (c+d x))^2} \, dx &=-\frac{(e+f x)^3}{b d (a+b \sin (c+d x))}+\frac{(3 f) \int \frac{(e+f x)^2}{a+b \sin (c+d x)} \, dx}{b d}\\ &=-\frac{(e+f x)^3}{b d (a+b \sin (c+d x))}+\frac{(6 f) \int \frac{e^{i (c+d x)} (e+f x)^2}{i b+2 a e^{i (c+d x)}-i b e^{2 i (c+d x)}} \, dx}{b d}\\ &=-\frac{(e+f x)^3}{b d (a+b \sin (c+d x))}-\frac{(6 i f) \int \frac{e^{i (c+d x)} (e+f x)^2}{2 a-2 \sqrt{a^2-b^2}-2 i b e^{i (c+d x)}} \, dx}{\sqrt{a^2-b^2} d}+\frac{(6 i f) \int \frac{e^{i (c+d x)} (e+f x)^2}{2 a+2 \sqrt{a^2-b^2}-2 i b e^{i (c+d x)}} \, dx}{\sqrt{a^2-b^2} d}\\ &=-\frac{3 i f (e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b \sqrt{a^2-b^2} d^2}+\frac{3 i f (e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{a+\sqrt{a^2-b^2}}\right )}{b \sqrt{a^2-b^2} d^2}-\frac{(e+f x)^3}{b d (a+b \sin (c+d x))}+\frac{\left (6 i f^2\right ) \int (e+f x) \log \left (1-\frac{2 i b e^{i (c+d x)}}{2 a-2 \sqrt{a^2-b^2}}\right ) \, dx}{b \sqrt{a^2-b^2} d^2}-\frac{\left (6 i f^2\right ) \int (e+f x) \log \left (1-\frac{2 i b e^{i (c+d x)}}{2 a+2 \sqrt{a^2-b^2}}\right ) \, dx}{b \sqrt{a^2-b^2} d^2}\\ &=-\frac{3 i f (e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b \sqrt{a^2-b^2} d^2}+\frac{3 i f (e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{a+\sqrt{a^2-b^2}}\right )}{b \sqrt{a^2-b^2} d^2}-\frac{6 f^2 (e+f x) \text{Li}_2\left (\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b \sqrt{a^2-b^2} d^3}+\frac{6 f^2 (e+f x) \text{Li}_2\left (\frac{i b e^{i (c+d x)}}{a+\sqrt{a^2-b^2}}\right )}{b \sqrt{a^2-b^2} d^3}-\frac{(e+f x)^3}{b d (a+b \sin (c+d x))}+\frac{\left (6 f^3\right ) \int \text{Li}_2\left (\frac{2 i b e^{i (c+d x)}}{2 a-2 \sqrt{a^2-b^2}}\right ) \, dx}{b \sqrt{a^2-b^2} d^3}-\frac{\left (6 f^3\right ) \int \text{Li}_2\left (\frac{2 i b e^{i (c+d x)}}{2 a+2 \sqrt{a^2-b^2}}\right ) \, dx}{b \sqrt{a^2-b^2} d^3}\\ &=-\frac{3 i f (e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b \sqrt{a^2-b^2} d^2}+\frac{3 i f (e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{a+\sqrt{a^2-b^2}}\right )}{b \sqrt{a^2-b^2} d^2}-\frac{6 f^2 (e+f x) \text{Li}_2\left (\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b \sqrt{a^2-b^2} d^3}+\frac{6 f^2 (e+f x) \text{Li}_2\left (\frac{i b e^{i (c+d x)}}{a+\sqrt{a^2-b^2}}\right )}{b \sqrt{a^2-b^2} d^3}-\frac{(e+f x)^3}{b d (a+b \sin (c+d x))}-\frac{\left (6 i f^3\right ) \operatorname{Subst}\left (\int \frac{\text{Li}_2\left (\frac{i b x}{a-\sqrt{a^2-b^2}}\right )}{x} \, dx,x,e^{i (c+d x)}\right )}{b \sqrt{a^2-b^2} d^4}+\frac{\left (6 i f^3\right ) \operatorname{Subst}\left (\int \frac{\text{Li}_2\left (\frac{i b x}{a+\sqrt{a^2-b^2}}\right )}{x} \, dx,x,e^{i (c+d x)}\right )}{b \sqrt{a^2-b^2} d^4}\\ &=-\frac{3 i f (e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b \sqrt{a^2-b^2} d^2}+\frac{3 i f (e+f x)^2 \log \left (1-\frac{i b e^{i (c+d x)}}{a+\sqrt{a^2-b^2}}\right )}{b \sqrt{a^2-b^2} d^2}-\frac{6 f^2 (e+f x) \text{Li}_2\left (\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b \sqrt{a^2-b^2} d^3}+\frac{6 f^2 (e+f x) \text{Li}_2\left (\frac{i b e^{i (c+d x)}}{a+\sqrt{a^2-b^2}}\right )}{b \sqrt{a^2-b^2} d^3}-\frac{6 i f^3 \text{Li}_3\left (\frac{i b e^{i (c+d x)}}{a-\sqrt{a^2-b^2}}\right )}{b \sqrt{a^2-b^2} d^4}+\frac{6 i f^3 \text{Li}_3\left (\frac{i b e^{i (c+d x)}}{a+\sqrt{a^2-b^2}}\right )}{b \sqrt{a^2-b^2} d^4}-\frac{(e+f x)^3}{b d (a+b \sin (c+d x))}\\ \end{align*}

Mathematica [A]  time = 2.37336, size = 446, normalized size = 1.07 \[ -\frac{(e+f x)^3}{b d (a+b \sin (c+d x))}+\frac{3 i f \left (-i \left (2 f^2 \sqrt{a^2-b^2} \text{PolyLog}\left (3,\frac{b e^{i (c+d x)}}{\sqrt{b^2-a^2}-i a}\right )-2 f^2 \sqrt{a^2-b^2} \text{PolyLog}\left (3,-\frac{b e^{i (c+d x)}}{\sqrt{b^2-a^2}+i a}\right )+d^2 \left (2 e^2 \sqrt{b^2-a^2} \tan ^{-1}\left (\frac{i a+b e^{i (c+d x)}}{\sqrt{a^2-b^2}}\right )+f x \sqrt{a^2-b^2} (2 e+f x) \left (\log \left (1-\frac{b e^{i (c+d x)}}{\sqrt{b^2-a^2}-i a}\right )-\log \left (1+\frac{b e^{i (c+d x)}}{\sqrt{b^2-a^2}+i a}\right )\right )\right )\right )-2 d f \sqrt{a^2-b^2} (e+f x) \text{PolyLog}\left (2,\frac{b e^{i (c+d x)}}{\sqrt{b^2-a^2}-i a}\right )+2 d f \sqrt{a^2-b^2} (e+f x) \text{PolyLog}\left (2,-\frac{b e^{i (c+d x)}}{\sqrt{b^2-a^2}+i a}\right )\right )}{b d^4 \sqrt{-\left (a^2-b^2\right )^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((e + f*x)^3*Cos[c + d*x])/(a + b*Sin[c + d*x])^2,x]

[Out]

((3*I)*f*(-2*Sqrt[a^2 - b^2]*d*f*(e + f*x)*PolyLog[2, (b*E^(I*(c + d*x)))/((-I)*a + Sqrt[-a^2 + b^2])] + 2*Sqr
t[a^2 - b^2]*d*f*(e + f*x)*PolyLog[2, -((b*E^(I*(c + d*x)))/(I*a + Sqrt[-a^2 + b^2]))] - I*(d^2*(2*Sqrt[-a^2 +
 b^2]*e^2*ArcTan[(I*a + b*E^(I*(c + d*x)))/Sqrt[a^2 - b^2]] + Sqrt[a^2 - b^2]*f*x*(2*e + f*x)*(Log[1 - (b*E^(I
*(c + d*x)))/((-I)*a + Sqrt[-a^2 + b^2])] - Log[1 + (b*E^(I*(c + d*x)))/(I*a + Sqrt[-a^2 + b^2])])) + 2*Sqrt[a
^2 - b^2]*f^2*PolyLog[3, (b*E^(I*(c + d*x)))/((-I)*a + Sqrt[-a^2 + b^2])] - 2*Sqrt[a^2 - b^2]*f^2*PolyLog[3, -
((b*E^(I*(c + d*x)))/(I*a + Sqrt[-a^2 + b^2]))])))/(b*Sqrt[-(a^2 - b^2)^2]*d^4) - (e + f*x)^3/(b*d*(a + b*Sin[
c + d*x]))

________________________________________________________________________________________

Maple [F]  time = 1.598, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( fx+e \right ) ^{3}\cos \left ( dx+c \right ) }{ \left ( a+b\sin \left ( dx+c \right ) \right ) ^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x+e)^3*cos(d*x+c)/(a+b*sin(d*x+c))^2,x)

[Out]

int((f*x+e)^3*cos(d*x+c)/(a+b*sin(d*x+c))^2,x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)^3*cos(d*x+c)/(a+b*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [C]  time = 3.70981, size = 5299, normalized size = 12.68 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)^3*cos(d*x+c)/(a+b*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/2*(2*(a^2 - b^2)*d^3*f^3*x^3 + 6*(a^2 - b^2)*d^3*e*f^2*x^2 + 6*(a^2 - b^2)*d^3*e^2*f*x + 2*(a^2 - b^2)*d^3*
e^3 + (-6*I*a*b*d*f^3*x - 6*I*a*b*d*e*f^2 + (-6*I*b^2*d*f^3*x - 6*I*b^2*d*e*f^2)*sin(d*x + c))*sqrt(-(a^2 - b^
2)/b^2)*dilog(-1/2*(2*I*a*cos(d*x + c) + 2*a*sin(d*x + c) + 2*(b*cos(d*x + c) - I*b*sin(d*x + c))*sqrt(-(a^2 -
 b^2)/b^2) + 2*b)/b + 1) + (6*I*a*b*d*f^3*x + 6*I*a*b*d*e*f^2 + (6*I*b^2*d*f^3*x + 6*I*b^2*d*e*f^2)*sin(d*x +
c))*sqrt(-(a^2 - b^2)/b^2)*dilog(-1/2*(2*I*a*cos(d*x + c) + 2*a*sin(d*x + c) - 2*(b*cos(d*x + c) - I*b*sin(d*x
 + c))*sqrt(-(a^2 - b^2)/b^2) + 2*b)/b + 1) + (6*I*a*b*d*f^3*x + 6*I*a*b*d*e*f^2 + (6*I*b^2*d*f^3*x + 6*I*b^2*
d*e*f^2)*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2)*dilog(-1/2*(-2*I*a*cos(d*x + c) + 2*a*sin(d*x + c) + 2*(b*cos(d*
x + c) + I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2) + 2*b)/b + 1) + (-6*I*a*b*d*f^3*x - 6*I*a*b*d*e*f^2 + (-6*I*
b^2*d*f^3*x - 6*I*b^2*d*e*f^2)*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2)*dilog(-1/2*(-2*I*a*cos(d*x + c) + 2*a*sin(
d*x + c) - 2*(b*cos(d*x + c) + I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2) + 2*b)/b + 1) - 3*(a*b*d^2*e^2*f - 2*a
*b*c*d*e*f^2 + a*b*c^2*f^3 + (b^2*d^2*e^2*f - 2*b^2*c*d*e*f^2 + b^2*c^2*f^3)*sin(d*x + c))*sqrt(-(a^2 - b^2)/b
^2)*log(2*b*cos(d*x + c) + 2*I*b*sin(d*x + c) + 2*b*sqrt(-(a^2 - b^2)/b^2) + 2*I*a) - 3*(a*b*d^2*e^2*f - 2*a*b
*c*d*e*f^2 + a*b*c^2*f^3 + (b^2*d^2*e^2*f - 2*b^2*c*d*e*f^2 + b^2*c^2*f^3)*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2
)*log(2*b*cos(d*x + c) - 2*I*b*sin(d*x + c) + 2*b*sqrt(-(a^2 - b^2)/b^2) - 2*I*a) + 3*(a*b*d^2*e^2*f - 2*a*b*c
*d*e*f^2 + a*b*c^2*f^3 + (b^2*d^2*e^2*f - 2*b^2*c*d*e*f^2 + b^2*c^2*f^3)*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2)*
log(-2*b*cos(d*x + c) + 2*I*b*sin(d*x + c) + 2*b*sqrt(-(a^2 - b^2)/b^2) + 2*I*a) + 3*(a*b*d^2*e^2*f - 2*a*b*c*
d*e*f^2 + a*b*c^2*f^3 + (b^2*d^2*e^2*f - 2*b^2*c*d*e*f^2 + b^2*c^2*f^3)*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2)*l
og(-2*b*cos(d*x + c) - 2*I*b*sin(d*x + c) + 2*b*sqrt(-(a^2 - b^2)/b^2) - 2*I*a) - 3*(a*b*d^2*f^3*x^2 + 2*a*b*d
^2*e*f^2*x + 2*a*b*c*d*e*f^2 - a*b*c^2*f^3 + (b^2*d^2*f^3*x^2 + 2*b^2*d^2*e*f^2*x + 2*b^2*c*d*e*f^2 - b^2*c^2*
f^3)*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2)*log(1/2*(2*I*a*cos(d*x + c) + 2*a*sin(d*x + c) + 2*(b*cos(d*x + c) -
 I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2) + 2*b)/b) + 3*(a*b*d^2*f^3*x^2 + 2*a*b*d^2*e*f^2*x + 2*a*b*c*d*e*f^2
 - a*b*c^2*f^3 + (b^2*d^2*f^3*x^2 + 2*b^2*d^2*e*f^2*x + 2*b^2*c*d*e*f^2 - b^2*c^2*f^3)*sin(d*x + c))*sqrt(-(a^
2 - b^2)/b^2)*log(1/2*(2*I*a*cos(d*x + c) + 2*a*sin(d*x + c) - 2*(b*cos(d*x + c) - I*b*sin(d*x + c))*sqrt(-(a^
2 - b^2)/b^2) + 2*b)/b) - 3*(a*b*d^2*f^3*x^2 + 2*a*b*d^2*e*f^2*x + 2*a*b*c*d*e*f^2 - a*b*c^2*f^3 + (b^2*d^2*f^
3*x^2 + 2*b^2*d^2*e*f^2*x + 2*b^2*c*d*e*f^2 - b^2*c^2*f^3)*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2)*log(1/2*(-2*I*
a*cos(d*x + c) + 2*a*sin(d*x + c) + 2*(b*cos(d*x + c) + I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2) + 2*b)/b) + 3
*(a*b*d^2*f^3*x^2 + 2*a*b*d^2*e*f^2*x + 2*a*b*c*d*e*f^2 - a*b*c^2*f^3 + (b^2*d^2*f^3*x^2 + 2*b^2*d^2*e*f^2*x +
 2*b^2*c*d*e*f^2 - b^2*c^2*f^3)*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2)*log(1/2*(-2*I*a*cos(d*x + c) + 2*a*sin(d*
x + c) - 2*(b*cos(d*x + c) + I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2) + 2*b)/b) + 6*(b^2*f^3*sin(d*x + c) + a*
b*f^3)*sqrt(-(a^2 - b^2)/b^2)*polylog(3, 1/2*(2*I*a*cos(d*x + c) - 2*a*sin(d*x + c) + 2*(b*cos(d*x + c) + I*b*
sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2))/b) - 6*(b^2*f^3*sin(d*x + c) + a*b*f^3)*sqrt(-(a^2 - b^2)/b^2)*polylog(3
, 1/2*(2*I*a*cos(d*x + c) - 2*a*sin(d*x + c) - 2*(b*cos(d*x + c) + I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2))/b
) - 6*(b^2*f^3*sin(d*x + c) + a*b*f^3)*sqrt(-(a^2 - b^2)/b^2)*polylog(3, -(I*a*cos(d*x + c) + a*sin(d*x + c) +
 (b*cos(d*x + c) - I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2))/b) + 6*(b^2*f^3*sin(d*x + c) + a*b*f^3)*sqrt(-(a^
2 - b^2)/b^2)*polylog(3, -(I*a*cos(d*x + c) + a*sin(d*x + c) - (b*cos(d*x + c) - I*b*sin(d*x + c))*sqrt(-(a^2
- b^2)/b^2))/b))/((a^2*b^2 - b^4)*d^4*sin(d*x + c) + (a^3*b - a*b^3)*d^4)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)**3*cos(d*x+c)/(a+b*sin(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (f x + e\right )}^{3} \cos \left (d x + c\right )}{{\left (b \sin \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)^3*cos(d*x+c)/(a+b*sin(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((f*x + e)^3*cos(d*x + c)/(b*sin(d*x + c) + a)^2, x)